

不同除草剂防治桉树林薇甘菊试验

陈 奎

广西壮族自治区国有高峰林场 530001

摘 要: 藏甘菊由于自身生长特点以及植物特性,被称为世界范围内最危险的杂草之一,是我国重点防治对象,对此,本 文在详细介绍薇甘菊植物特点以及危险性,并根据该植物生长规律,选择不同类型的除草剂开展一系列防治实验,最终得出 相关实验结论,并且以此作为基础条件,总结出林薇甘菊防治策略。

关键词:除草剂;桉树;薇甘菊;防治目标

自从20世纪80年代薇甘菊传入广西地区以来,截止到 2022年底,广西地区各个城市的林区病害已经超过了 5.5 万 hm²,并且每年呈现出增长趋势。为了有效控制薇甘菊病害问题, 广西地区每年投入大量的人力、物力以及财力,但是所得到的防 治效果并不明显,目前现有的薇甘菊防治技术手段中,化学防治 方法被广泛的应用,但是受到自然环境、薇甘菊生长时间以及除 草剂属性等因素的影响,各个地区的防治效果各不相同,且该病 害重复产生的情况频繁产生。

1 薇甘菊植物特点

薇甘菊植物属于菊花科、假泽兰属,该植物原产地为美洲, 经过植物繁衍和发展, 目前已经分布在整个东南亚以及太平洋 地区。自从薇甘菊植物入侵至我国,已经被国内列为植物的重点 检查对象和防治目标。该植物外表为单叶对生,叶片较薄,外形 大多数为心形或者是长戟形,开花后头部的花朵娇小,但是数量 较多,通常情况下,单只包含四个花朵,并且在枝头一端形成复 杂的伞状,一般情况下,花朵为白色,果实为黑色。

2 薇甘菊危险性

薇甘菊产地通常分布在南美洲与中美洲,但是随着全球经 济贸易的不断发展,该植物随着国家流通,从原产地逐渐扩大生 长范围和地区,现阶段大面积分布在亚洲、太平洋等地区,是世 界最具有危险性的外来入侵物种,由于该植物自身的生长特点, 已经成为最具有影响力、最危险的杂草之一四。

我国境内的云南、江西以及两广一带等地区已经成为薇甘 菊影响的主要地区,由于该植物是藤蔓植物,在生长过程中,会 主动缠绕或攀附在其他植物上,不仅与植物争抢营养,还会由于 过度的缠绕,阻碍其他植物进行光合作用,直至植物死亡。除此 之外,薇甘菊在生长时还会散发出化学物质,影响土壤、破坏生 态环境、抑制其他植物的成长和萌发。

由于该物质生命力顽强,主要出现在城市交通、林区、农田、 河流以及湿地等,这是因为潮湿的土壤可以为该植物提供良好 的生长环境, 而在春季, 薇甘菊的种子会随着风分散在各个地 区,而当光照条件、环境温度等满足其生长,该植物会快速的繁 衍,缠绕树木并将原本植物所覆盖。

由此可见,薇甘菊大面积的生长与传播,不仅严重破坏了林 区与自然环境的平衡,同样影响生物种类的多样化,阻碍了林区 与农业的正常发展,严重影响森林的生态安全。

3 实验流程

3.1 实验药品

为保证实验结果的通用性,本次桉树林薇甘菊实验将使用 以下几种市面常见的除草剂。其中包含:浓度为 50%的硝磺·莠 去津可湿性粉剂;乙羧氟草醚乳油;草甘膦铵盐;紫薇清;草铵 膦;滴酸·草甘膦;甲嘧磺隆粉剂^四。

3.2 实验地区

所选择的实验地区为广西省某林场,由于该地区的气候为 热带湿润型季风气候,因此近几年该地区所种植的桉树林,成为 了薇甘菊病害产生的高发区域,整个实验区域面积为 533.3 hm², 并且薇甘菊的基础覆盖率已经超过了50%,而在成熟林中薇甘 菊开植物的覆盖率已经超过了75%,不仅严重影响了桉树林植 物的正常生长,并且还破坏了当地的生态平衡,加上该地区薇甘 菊的覆盖面积已经超过桉树林最大承受范围,针对此种现状,化 学除治已经成为目前基础的防治技术手段。

3.3 实验流程

实际开展除草剂防治实验之前,首先需要将实验地区按照 除草剂数量,以及实验流程划分成若干个实验区域,并且实验方 法选择植物茎、叶片喷洒方式,按照实验方案计算出该区域除草 剂最小用量,随后均匀的喷洒在薇甘菊叶片以及根茎位置上,直 至两个部位呈现出滴水状态。同时将各种除草剂按照实验小组 进行划分,每种除草剂均需要处理至少三个区域,并且每种除草 剂需单独设置一个对照小组,该小组所喷洒的为清水;每个区域 面积应不小于900 m²,并且各区域之间间隔为2m;除草剂喷洒 前后需保证 48 小时内不产生降雨[3]。

为保证实验结果具有权威性和普遍性,使用除草剂进行实

(學) 林业技术

验时,药量需按照常规用药,并在药剂喷洒3个月后检查实验结 果,从中选出3~4种实验效果较佳的除草剂,针对已经成熟化 的桉树林进行防治效果实验,整个实验流程中应保证除草剂使 用量的常规化,并在药剂喷洒后3个月、6个月以及12个月检查 防治效果。

除此之外,针对薇甘菊病害严重的桉树林,则需要根据树木 生长情况适当增加除草剂使用量,以此保证防治效果,比如:通 过详细了解桉树林种植面积、生长情况以及薇甘菊病害程度,需 要单独设置常规药量、浓度提高50%药量以及浓度提高100%药 量,并且选择单独喷药以及喷药+割藤两种防治手段,等待防治 后 3 个月、6 个月以及 12 个月检查防治效果。

4 实验结果

4.1 不同除草剂实验效果

根据表 1 中相关实验数据可知:除草剂在喷洒之前,薇甘菊 病害在林区的覆盖密度与等级保持在50%左右,而使用草甘膦 铵盐粉剂、紫薇清水剂、草铵膦水剂和滴酸·草甘膦水剂等相关 除草剂,并且按照除草剂常规使用量喷洒三个月后,该实验地区 的薇甘菊病害覆盖面积已经降到 20%以下,并且以上除草剂使 用之后, 林区的薇甘菊病害等级已从第2等级降低至0~1级, 由此可见,以上几种除草剂所产生的防治效果十分显著,所以需 要将其作为桉树林实际区域实验药剂。如表 1,不同除草剂实验 数据[4]。

4.2 不同防治手段实验效果

由表 2 中数据和信息可知,针对薇甘菊病害十分严重的林 区来说,即使使用不同类型的除草剂,在防治技术手段的选择 上,喷药+割藤此种复合型的防治方法所得到的防治效果明显 高于单纯的喷药技术,其中草甘膦铵盐除草剂在使用喷药+割 藤防治技术手段后,在三个时间段内所产生的防治效果,以及降 低病害覆盖面积与等级等方面具有明显区别。

除此之外,不同类型的除草剂在使用总量上,所产生的防治 效果同样具有一定差异性,根据表格中数据变化趋势进一步分 析,除草剂用量的提高,病害防治效果则越好,尤其在除草剂喷 洒六个月以内,不同类型的除草剂中,草甘膦铵试剂所产生的治 理效果最高,尤其将该除草剂按照浓度提高50%药量,并冼择喷 药+割藤复合型防治技术处理后,林区长达六个月内没有产生 重复病害;紫薇清和滴酸·草甘膦除草剂按照浓度提高 100%药 量施药标准进行实验后,林区内至少三个月没有产生重复病害。 如表 2, 桉树林薇甘菊防治效果[5]。

5 桉树林薇甘菊防治策略

5.1 化学防治

为有效开展桉树林薇甘菊防治,越来越多的林区管理部门 选择化学防治, 因为化学防治方式是林薇甘菊防治技术手段的 重要构成环节,并且经过优化和完善已经取得了一定防治成效。 该防治方法主要利用除草剂或者农药有效清除薇甘菊,由于除 草剂和农药可以有效提高对薇甘菊防治效果,同时除草剂在使 用过程中对于其他农作物或者林区树木的影响较小, 并且经过 实验操作证明我国大多数除草剂对人体与动物并无危害, 所以 使用化学防治不仅可以有效清除薇甘菊植物成长的活性, 还能 够快速恢复土壤稳定性。

5.2 人工清除

人工清除技术手段,主要利用人工操控切割设备,有效去除 薇甘菊植物的营养供给体, 以此有效降低该植物在林区的基础 覆盖率。因此使用该技术时,工作人员首先需要利用专业的除草 设备将薇甘菊植物的营养供给体去除,并且收集后集中销毁,或 者将去除的营养供给体反向操作,对薇甘菊植物进行覆盖,以此 降低该植物的光合作用。由此可见,利用人工清除法定期切割营 养供给体,可以有效抑制和阻碍薇甘菊植物的成长,进而实现薇 甘菊病害的防治,但是此种防治技术手段需要投入大量的人力、 物力与财力,因此在防治过程中应慎重选择。

5.3 生态控制

生态调控防治法需要在薇甘菊植物分布的地区使用黑膜覆 盖法,以此有效提升地面温度,同时利用此种遮挡阳光的方式, 能够有效阻隔该植物光合作用,以此有效防治薇甘菊病害问题。 同时,还可以积极引进适合的遮蔽物,有效对薇甘菊植物进行全

74.1	
常规药量/hm	1 ² II ⁷

处理方式	常规药量/hm²	喷药前后薇甘菊发生盖度和等级		
		喷药前	喷药3个月后	
硝磺•莠去津 50%粉剂	2250g	43.33%±7.64%, 3	18.33%±5.77%, 2a	
乙羧氟草醚乳油	6000ml	48.33%±7.64%, 3	20.00%±8.66%, 2a	
草甘膦铵盐粉剂	2250g	45.00%±10.00%, 3	0%±0%, 0b	
紫薇清水剂	4500m1	48.33%±7.64%, 3	0%±0%, 0b	
草铵膦水剂	4500ml	48.33%±7.64%, 3	3.33%±1.53%, 1b	
滴酸•草甘膦水剂	6000ml	45.00% ± 10.00%, 3	0%±0%, 0b	
甲嘧磺隆粉剂	6000g	50.00% ± 5.00%, 3	18.33%±2.89%, 2a	
对照(CK)	0g	40%, 3	50%, 3c	
	备注: 同列不同/	ト写字母表示 P<0.05		

表 1 不同除草剂实验数据

#	0	July Lost	14 44	11.74	カナンハ	效果
-	٠,	F/r F/0	林 细	丁畑	ISB V	公石井

			10	2 19 19 11 11 11 日 2	初初祖从本			
药剂	用药量	喷药前	三个月		六	个月	十二	个月
	/hm²		喷药	喷药+割藤	喷药	喷药+割藤	喷药	喷药+割藤
草甘膦	2 250 g	81.67%±	37.67%±	$3.67\%\pm$	$46.67\% \pm$	8.33%±	76.67%±	37.67%±
铵盐		7.64%, 4	4.04%, 3a	1.15%, 1a	5.77%, 3a	1.44%, 1a	2.89%, 4a	4. 04%, 38
	3 375 g	86.67%±	18.33%±	0%±0%, 0b	25.00%±	0%±0%, 0b	48.33%±	21.67%±
		5. 78%, 4	2.89%, 2b		5.00%, 2b		2.89%, 3b	2.89%, 21
	4 500 g	88.33%±	14.00%±	0%±0%, 0b	23.33%±	0%±0%, 0b	38.67%±	17.33%±
		10.00%, 4	1.73%, 2b		2.89%, 2b		6.03%, 3c	4.04%, 20
	4 500	78.33%±	43.33%±	23.33%±	53.33%±	45.00%±	71.67%±	71.67%±
	m1	5. 78%, 4	5.77%, 3a	5. 77%, 2a	5.77%, 3a	8.66%, 3a	5.77%, 4a	5. 77%, 48
紫薇清	6 750	76.67%±	17.33%±	4.33%±	41.00%±	23.33%±	81.00%±	44.33%±
	m1	2.89%, 4	6.81%, 2b	1.15%, 1b	8.54%, 3b	2.89%, 2b	3.61%, 4b	11.02%, 3
	9 000	88.33%±	18.33%±	0%±0%, 0c	21.67%±	21.66%±	91.67%±	42.00%±
	m1	12.58%, 4	2.89%, 2b		2.89%, 2c	2.89%, 2b	7.64%, 4c	6. 93%, 31
	4 500 m	81.67%±	53.33%±	46.67%±	81.67%±	78.33%±	85.00%±	73.33%±
		7.64%, 4	5.77%, 3a	5.77%, 3a	7.64%, 4a	10.41%, 4a	10.00%, 4a	2. 89%, 48
草铵膦	6 750	86.67%±	35.33%±	26.00%±	83.33%±	53.33%±	80.00%±	79.67%±
	m1	7.64%, 4	4.04%, 3b	6. 56%, 2b	5.77%, 4a	5.77%, 3b	5.00%, 4a	4. 73%, 41
	9 000	81.67%±	21.67%±	$4.67\%\pm$	45.00%±	28.33%±	83.67%±	78.33%±
	m1	7.64%, 4	2.89%, 2c	0.58%, 1c	5.00%, 3b	2.89%, 2c	5.13%, 4a	5. 77%, 41
	6 000	83.33%±	46.67%±	28.33%±	53.33%±	48.33%±	91.67%±	77. 33%±
	m1	10.41%, 4	5.77%, 3a	2.89%, 2a	2.89%, 3a	7.64%, 3a	7.64%, 4a	4. 04%, 4a
滴	9 000	76.67%±	28.33%±	6.00%±	43.33%±	9.33%±	85.00%±	51.67%±
酸•草	m1	2.89%, 4	2.89%, 2b	1.73%, 1b	5.77%, 3b	1.15%, 1b	8.66%, 4a	2.89%, 31
甘膦	12 000	88.33%±	17.66%±	0%±0%, 0c	23.33%±	3.50%±	88.33%±	44.33%±
	m1	10.40%, 4	2.52%, 2c		2.89%, 2c	0.87%, 1c	2.89%, 4a	11.02%, 3
			备注:	司列不同小写字	ヱ母表示 P<0.	05		

面覆盖,并且根据该植物生长环境制定出科学有效的防治方案, 进而阻止薇甘菊植物生长范围的蔓延,以此达到防治效果。除此 之外,在生态控制环节中,还可以根据薇甘菊植物生长特性选择 适合的代替物种,以此实现林区的全面覆盖,比如:幌伞枫、血 桐,利用此种植物生长所产生的代谢物质有效控制薇甘菊的蔓 延,从而阻止该植物病害重新产生。

5.4 生物防治

生物防治技术主要指的是针对薇甘菊植物种类, 引进该植 物的天敌或者病原微生物等相关物质,以此有效达到薇甘菊病 害的防治效果。

薇甘菊植物的天敌主要包含:安婀珍蝶和艳婀珍蝶,以上两 昆虫主要依靠吸食薇甘菊叶片中的营养和水分而存活, 所以能 够有效控制薇甘菊的生产速度;寄宿植物则通过自身寄宿在薇 甘菊上,吸收其自身的养分,致使该植物枯萎死亡,进而控制薇 甘菊在林区的基础覆盖面积与影响等级,同时以上昆虫以及寄 宿植物在生长过程中,不会对其他植物或者树木产生明显的影 响与作用,因此不会对林区生态平衡造成损坏;病原微生物防治 技术手段主要通过生存能力、适应能力较强的细菌感染薇甘菊, 致使其快速产生病虫害,导致叶片坏死甚至直接死亡,而此种病 虫害会形成一种生物循坏,一旦使用后,能够快速扩散至其他薇 甘菊制度,有效暂缓薇甘菊的生长速度。

6 结语

由此可见,种林业有害生物的危害。相信随着我国对这种林 业有害生物的综合防治技术的不断提升, 防治手段将会得到较 大的提高,从而有效遏制这种林业有害生物的扩散蔓延,达到综 合防治的目的。

参考文献:

[1]周建坚,容仁立,许祝莨,等.3种除草剂对桉树人工林地中薇甘 菊的防除效果[J].河北林业科技,2022(4):35-37.

[2]樊林华,李华东,符樱瀚,等.不同除草剂防治桉树林薇甘菊试验 [J]. 桉树科技,2021,38(4):36-39.

[3]张威,祁进康,吴江梅,等. 藏甘菊提取物抗烟草花叶病毒活性研 究[J].山东农业科学,2023,55(1):112-117.

[4]黄志华.林业有害生物薇甘菊防治技术及实施要点[J].中国林 副特产,2022(6):50-51+54.

[5]钟圣赟,王鑫,曾亚红,等.薇甘菊生物防治的研究进展[J].热带林 业,2022,50(4):77-80.